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Abstract—Doors are important landmarks for indoor position-
ing systems. Hence an accurate and light-weight door detection
approach is highly desired. The state-of-the-art solutions are
either vision based or infrastructure based, which incur non-
trivial device or management cost. This paper presents a novel
approach, Light-weight Magnetic-based Door Detection (LMDD),
which only relies on the information from built-in sensors of
a smartphone. LMDD detects a door by analyzing the change
of magnetic signal and extracting special features caused by
doors. It is light-weight in both computation and infrastructure
cost. We have implemented a prototype of LMDD that has been
installed on various Android phones. Experimental results show
that LMDD achieves door detection accuracy of 74% in average,
ranging from 66% to 85% in various typical environments such
as offices, classrooms, residential houses, and a hospital.

Index Terms—Door Detection; Indoor Positioning Systems
(IPS); Magnetic Signal; Wireless Sensor Network.

I. INTRODUCTION

Indoor Positioning Systems (IPSs) have attracted much
attention from both academia and industry. In many real-
world applications, especially some emergent situations, the
requirements of location information are raised rapidly. For
example, IPSs can help seniors or visually impaired people
locate their position and further look for a destination in a
building.

As natural landmarks, the locations of doors constitute sig-
nificant factors for high-accuracy IPS applications. Doors not
only connect rooms and corridors, but also determine potential
navigation paths. Compared with other architectural elements,
like elevators, escalators and stairs, doors are pervasive in
almost all indoor environments. To detect doors accurately
with low complexity, a light-weight door detection approach
is highly desired.

The state-of-the-art door detection solutions can be catego-
rized into two types: vision based and infrastructure based.
Vision based solutions rely on complicated image processing
and pattern recognition algorithms to identify doors. For
example, they have been used to navigate intelligent robots
in indoor environments [44]. Meanwhile, door detection with
infrastructures, such as preinstalled ultra-wide band devices,
WiFi APs, or RFID tags, was proposed for precise indoor
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Fig. 1. Changes of magnetic intensity across sampling points.

localization [24]. For example, Zee [27] combines the sensor
information of smartphones with the WiFi information of
wireless infrastructures to calculate door positions. In general,
these existing solutions incur non-trivial, sometimes even
enormous device or management cost.

In this paper we propose a novel door detection approach
named LMDD, which is a light-weight and broadly applicable
door detection approach based on information collected by a
smartphone. It analyzes readings from the built-in magnetic
sensors (e.g., magnetometer) of a smartphone. Doors are then
detected by capturing the anomalies or sharp fluctuations of
magnetic signals, as demonstrated in Fig. 1. Without any
pre-installed infrastructure, we can find a door passively and
efficiently from magnetic sensing data.

The biggest challenge of an infrastructure-free door detec-
tion approach is to accurately extract the signal features for
an event of passing through a door. This is because magnetic
signal changes may be caused by various “environmental
events”. For instance, magnetic intensity values also change
sharply when the holder shakes the smartphone. To eliminate
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such “noises”, we combine feature analysis methods with
automatic filtering on magnetic sensing data.

We have implemented a prototype of LMDD and success-
fully deployed it on a variety of Android phones, including
Google Nexus5, Sumsang Galaxy S4, HTC One M8, and so
forth. We evaluate our approach in various typical environ-
ments, including offices and classrooms in a university, resi-
dential houses, and a hospital. The experimental results show
that the door detection accuracy is around 74% in average,
ranging from 66% to 85%. Meanwhile, the computational
complexity of LMDD stays in O(KNσs2), where K denotes
the number of doors, N represents the necessary sampling
points for detecting a single door (typically between 100 and
200), and σs is the width of the Gaussian function (typically
between 20 and 100).

The main contributions of our work are listed as follows:

• A novel light-weight door detection approach based on
magnetic signal information (LMDD) is proposed. With-
out pre-installed facilities, LMDD makes use of natural
features of doors in indoor environments. Thus, it can
provide fine-grained and sufficient landmarks for IPS
applications.

• A novel detection model is set up to capture door events
in the magnetic sensing data. It focuses on drastic inten-
sity variations of built-in magnetic sensors when users
pass through a door.

• We have implemented a prototype of LMDD and de-
ployed it on multiple popular Android smartphones. The
experimental results indicate that LMDD achieves an
acceptable precision in various typical environments.

Roadmap. The rest of this paper is organized as follows.
In Section II, we survey the related work. In Section III, we
introduce the design of LMDD. In Section IV, we describe
the system implementation and report the evaluation results.
Finally, Section V concludes our work.

II. RELATED WORK

Indoor localization has been a popular research topic in
recent years. Numerous door detection solutions have been
proposed because doorways often act as useful and important
landmarks for indoor localization. To our knowledge, related
works of door detection can be roughly divided into three
categories: 1) vision based [5], [9], [11], [13], [15], [23],
[30], [32], 2) infrastructure based [7], [12], [16], [21], [22],
[24], [25], [28], [33], [37]–[40], [42], [43], [45], [46], and 3)
infrastructure free [1], [6], [8], [10], [17]–[19], [29], [31], [34],
[41].

It is known that the 1) vision based and 2) infrastructure
based approaches are both subject to considerable overhead,
such as complicated image processing algorithms or expensive
infrastructure costs [3], [14], [20]. For example, WiFi finger-
printing based approaches [2], [4] need site survey and WiFi
infrastructures [26] in the sensing area. As a result, the 3)
infrastructure free approach becomes the focus of our research.

With regard to this approach, below we review four recent
works that are most relevant to our work.

IndoorAtlas [1], [35], a representative industrial solution,
takes advantage of the non-uniform distribution of ambient
magnetic fields for indoor positioning. In the training phase,
a magnetic distribution map must be established. Next, in
the localization phase, by comparing the collected magnetic
features with the map, one can obtain the location of a
smartphone. As for IndoorAtlas, not only the floor plan of the
concerned building is a precondition, but also the workload
of site survey is heavy. In our work, the above constrains are
released by applying a signal processing algorithm. Moreover,
doors are detected in real time without any training phase.

UnLoc [36] is an unsupervised indoor localization approach.
It collects time-stamped data from multiple built-in sensors of
smartphones and classifies those sensing data as signatures. In
UnLoc, some essential structures in a building, such as doors,
stairs and elevators, are defined as “Seed Landmarks”, which
are significant factors determining the localization accuracy.
One of preconditions of those seed landmarks is the floor plan
of the building. Without positions of seed landmarks, the ac-
curacy of UnLoc will decrease dramatically. In our approach,
the floor plan is not a necessary requirement. Number of doors
are calculated by proposed method.

WalkCompass [31] employs the magnetic information and
human walk analysis to estimate the direction of human
movement. Multiple sensors are used to model the human
behaviour. Differently, in this paper we distinguish human
actions by analyzing the change patterns of magnetic signals
(only from the magnetometer). And our method can generate
a sound level of door detection accuracy.

As the magnetic sensor is direction sensitive, Chung et
al. [10] design a special sensing device, composed of an
array of e-compasses for measuring multi-directional magnetic
intensities. By comparing the measurement results with the
magnetic distribution map, they are able to obtain the location
of the device. In this paper, we only use the off-the-shelf
smartphones (rather than special devices), combined with a
sophisticated feature analysis algorithm, to detect doors.

III. METHODOLOGY

LMDD is a door detection approach that only relies on the
sensing data from a single smartphone. It utilizes the magnetic
field characteristics (§ III-A) to detect the event of passing
through a door. The approach consists of three processes: 1)
data acquisition (§ III-B), 2) signal analysis (§ III-C) , and 3)
environmental event cancellation (or denoising) (§ III-D) .

A. Magnetic Field Characteristics

In general, the magnetic field observed by sensors is a
combination of 1) geomagnetic field and 2) ambient magnetic
field. The geomagnetic field (i.e., the magnetic field of the
earth) often acts as a global reference for orientation detection
and navigation. However, modern buildings usually have many
electronic and ferromagnetic structures, such as reinforced
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(a) In a fixed position
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(b) In a corridor
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(c) In a corridor with a door

Fig. 2. Magnetic intensity samples in three situations.

concrete, electronic sub-systems, and icon furniture. These am-
bient magnetic fields may well cause geomagnetic anomalies
in different areas [10]. In a nutshell, the geomagnetic field is
relatively weak in indoor environments.

We conduct a series of benchmark experiments using a
typical magnetic sensor (Honeywell HMC5883L). First, we
measure the magnetic intensity when holding the device in a
fixed position. The result is plotted in Fig. 2(a), demonstrating
the stability of magnetic intensity in a fixed position. Then,
the holder walks along a straight corridor, and the result is
shown in Fig. 2(b). In this case, it is hard to identify obvious
features from the changes of magnetic intensity. Finally, the
holder passes through a door and walks into a corridor, and
the result is recorded in Fig. 2(c). Obviously, there is a clear
“drop and rise” pattern in Fig. 2(c), which implies the event
of passing through a door.

B. Data Acquisition

Most of today’s smartphones contain magnetometers or
compasses for providing navigation services. The output of
these sensors consists of three vector components in x, y and
z axes. It has been reported that a smartphone is in most time
horizontally placed [34]. So, when people use smartphones for
indoor navigation, the x and y axes compose the horizontal
plane and the z axis represents the vertical direction.

A magnetic sample at time t is made up of three components
{M(x),M(y),M(z)}. Each component represents the reading
of an axis. Let M denote the square root of the magnetic fields

of all three vectors, so M =

√
M(x)2 +M(y)2 +M(z)2.

Then, the azimuth angle ψ can be calculated as:

ψ = arctan
|M(z)|√

M(x)2 +M(y)2
(1)

Normally, the magnetic sensors are often assembled on the
board of a smartphone. During the sensing period, carrying
ways of the smartphone are changed frequently. Thus, the
spatial posture of the magnetometer must be considered. In
addition to the azimuth angle ψ, the pitch angle ω and the roll
angle θ are introduced to determine the spatial posture. The
pitch angle controls the relative elevation between phone and
horizontal plane and the roll angle refers to the rotation around
the X direction respectively. We can transform the onboard

coordinate system (OCS) to the local absolute coordinate
system (LACS). All magnetic intensities of our approach are
obtained in LACS. Hence, the influence of the spatial posture
is limited to a minimum level according to the results of
transformation of the coordinate systems. Three components
of the magnetic strength in LACS can be derived as follows.

ML = Aψ · Aω ·Aθ ·MO (2)

where ML represents the magnetic components in LACS
and MO represents the magnetic components in the onboard
coordinate system respectively. The arrays of three angles are
shown as follows.

Aψ =

⎡
⎣ cosψ sinψ 0
− sinψ cosψ 0

0 0 1

⎤
⎦

Aω =

⎡
⎣ 1 0 0

0 cosω sinω
0 − sinω cosω

⎤
⎦

Aθ =

⎡
⎣ cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎤
⎦ (3)

For simplicity, we still use M to denote the ML in the
remaining sections. The magnetic intensity can be calculated
from three magnetic components. After the translation from
OCS to LACS, the effect of smartphone postures is reduced
to the minimum level. Therefore, sensing data traces from
different participators have the same evaluation base.

C. Signal Analysis

LMDD identifies door events in three steps, as plotted in
Fig. 3. In the first step (Pre-processing), the modified edge
preserving filter is applied to wipe out the Gaussian white
noise from raw data. In the second step (Denoising), other
noises generated from environmental signals are wiped. In the
third step (Feature Definition), we use a Bayes function based
on empirical feature classifications to regenerate the signal.
After above three steps, the door events can be detected.
Let K denote the number of potential doors, N represent
the necessary sampling points for detecting a single door
(typically between 100 and 200), and σs denote the width
of the Gaussian function (typically between 20 and 100), it is

922921921921921921
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Fig. 3. The outline of denoising procedures.

easy to prove that the computation complexity of LMDD stays
in O(KNσs2). This means that our algorithm only concerns
those sharp changes within a short time.

1) The edge preserving filter: The raw data of magnetic
intensity on each axis (say x) collected by a sensor can be
represented as

M(x) =Mbh(x) +Mn(x) +Me(x) (4)

where Mbh is the basic harmonic determined by the geomag-
netic intensity, Mn is the magnetic intensity of noise signal,
and Me is the magnetic intensity of environmental signal.
Mn(x) + Me(x) denotes the intensity of ambient magnetic
fields.

The noise signal Mn contains sensor noises caused by
measurements. We first use empirical values to calibrate the
built-in magnetometers. Afterwards, to remove those random
measurement noises, we design an edge preserving filter
F [M ]p (p is a sampling point):

F [M ]p =
1

Np

∑
q∈S

Gσs
(‖ p− q ‖)Gσr

(‖M(p)−M(q) ‖)M(q) (5)

where S is the linear area centered in p in the x-axis, and Np
is the normalization factor

Np =
∑
q∈S

Gσs
(‖ p− q ‖)Gσr

(‖M(p)−M(q) ‖) (6)

Here Gσs
is a spatial Gaussian kernel and Gσr

is a range Gaus-
sian kernel. The normal “‖ · · · ‖” represents the Euclidean
distance. Shown in Fig. 4, the spatial Gaussian kernel means
the time interval between p and q. Typically, the q is in a

range such that ‖ p − q ‖≤ σs. The range kernel gives the
difference of magnetic intensities. The parameter σr controls
the edge preservation effect. Those kernels can be calculated
as follows.

Gσs
(x) =

1

2πσs2
exp(−

x2

2σs2
)

Gσr
(y) =

1

2πσr2
exp(−

y2

2σr2
) (7)

where σs and σr are adjustable constants, which are de-
termined by the analysis of empirical results. The spatial
parameter σs decides the range features in the time domain,
i.e., the width of sampling points. At the same time, the
magnetic difference is scaled by σr. The pseudo-code of the
filter is illustrated as Algorithm 1.

2) The Bayes function: The change of the environmental
signal Me reflects environmental events in two major types:
human activities and passive events. Human activities are the
phone holder’s actions, such as turning around, body shaking,
and shaking the phone. They are basically unpredictable. To
understand the impact of human activities, detailed feature
analysis on signal changes is needed. We use pea to denote
the probability of human activities in all magnetic samples.

On the other hand, passive events represent ambient mag-
netic changes caused by environmental events, which include
the sharp changes in one axis or two axes of the magnetometer
We use p(d) to denote the probability of door event among all
passive events. Other passive events may be caused by moving
towards metal material or electrical devices. We use p(d̄) to
denote the probability of other types of passive events. We

923922922922922922
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Fig. 4. The spatial and range Gaussian kernels.

use pee to denote the probability of passive events in magnetic
samples.

Formally, given the ambient magnetic change, the condi-
tional probability of the door event is calculated as follows:

p(d|em) =
p(em|d) · p(d)

p(em)
(8)

where p(em) = pea + pee is the measurement of all environ-
mental events. p(em) can be calculated as follows:

p(em) =
n∑
i=1

p(em)i (9)

p(em)i = p(emi|d) · p(d) + p(emi|d̄) · p(d̄) (10)

where n is the number of distinct environmental events and
i is the event index. The parameter p(em)i represents the
probability of the i-th event among environmental events.
It is difficult to list all possible p(em)i. We only describe
three cases. For example, the probability of turn-around events
p(em)1 is the number of turning around events divided by the
number of all environmental events.

Algorithm 1 Edge preserving algorithm F [M ]p

Input:The set of a trace data, Mn; The total number of
sampling points, T
Output:The filtered trace, Mnn

1) Set a window size S, where S ≤ 2σs.
2) For p in T
3) Initialize: Np = 0, Fp = 0;
4) For q from [p− S/2, p+ S/2]
5) m = Gσs

(‖ p− q ‖)Gσr
(‖M(p)−M(q) ‖)

6) Fp+ = mM(q)
7) Np+ = m
8) Standardization Mnn = Fp/Np
9) End For

10) End For
11) Return Mnn
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Fig. 5. Changes of magnetic intensities when the holder turns around.

Obviously, p(em)1 is a part of pea, which is caused by
human activities. Similarly, the probability of shaking body
event p(em)2 is the number of shaking body events divided
by the number of all environmental events. p(em)2 also
belongs to the probability pea. Accordingly, the probability
of approaching metals p(em)3 is retained in the probability
pee.

We employ p(d|em) as the estimator to determine the door
events. If p(d|em) is greater than a given threshold ε (a
constant value based on prior knowledge), a door event is
detected. To understand the threshold ε clearly, below we
provide an example. If the door appears after a turn-around
event, ε exceeds the threshold obviously. It means that the
door event is very likely to be connected with the turn-around
event, since most doors are located in one side of the corridor.

D. Environmental Event Cancellation (Denoising)

Door event detection results based on signal analysis may
involve false positives, due to environmental events that are
not essentially related to doors. For more accurately defined
features, more detailed signal features of magnetometers need
to be investigated. For example, if metal material appears on
a side of the sensing area, readings from one axis (x or y)
will change (but readings from the z axis are not affected).
Signal changes by human activities also have specific patterns.
Fig. 5 shows the change pattern of three axes when a man (and
the smart phone) makes a 90◦ turn. Obviously, the average
magnetic intensity almost keeps in the same value, but the
values of x-axis and y-axis seem “exchanged”. When the man
carrying a smartphone walks slowly and shake their body, the
pattern is illustrated as Fig. 6. If the smartphone holder moves
to a metal object, the pattern is sketched in Fig. 7.

The features of common environmental events can be
formally described. If we define the features with specific
functions well, the irregularities and periodic noises like body
shaking and turning back can be observed and excluded from
event reports. A critical observation lies in that the metal
material near the door area only affects one or two plain axes
(e.g., x-axis or y-axis) of the magnetometer. Consequently,

924923923923923923
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Fig. 6. Changes of magnetic intensities when the holder shakes body.

LMDD utilizes the following cross correlative function to
search positive activities:

Cxy =

n∑
i=1

(M(x)i − E(M(x)))(M(y)i −E(M(y)))

√
n∑

i=1

(M(x)i − E(M(x)))2 ·
n∑

i=1

(M(y)i − E(M(y)))2

(11)

where E(M(x)) and E(M(y)) are the expected values of
magnetic intensity. If |Cxy| exceeds a threshold ξ, LMDD
will filter this event from the results. Finally, other kinds
of environmental events can be identified in a similar way.
According to our experiences, the threshold ξ ranges from 0
to 1.0. For highly relevant environmental events, ξ is larger
than 0.8. If ξ lies between 0.5 and 0.8, we call those events
“correlated events”. In our algorithm, ξ is initialized as 0.7.

IV. EXPERIMENTAL RESULTS

We have implemented a prototype system of LMDD on
top of multiple popular Android phones, including Google
Nexus5, Sumsang Galaxy S4, HTC One M8, Huawei Ascend
P7, Sony Xperia Z2, XiaoMi M2S, and Meizu MX. Using this
prototype system, we conduct real-world experiments in four
typical environments, including offices, classrooms, residential
houses, and a hospital. The experiments involve 50 volunteers
who live, work, or study in the four environments. More than
1800 experiments are conducted in three months.

A. Devices

First of all, we calibrate the magnetometer of every ex-
perimental smartphone with an external high-precision mag-
netic sensor (i.e., Honeywell HMC5883L is magneto-resistive
and its precision can reach 5 milli-gauss). For commercial
smart phones, the resolution is normally in μt level. After
calibration, each smart phone has own linear compensation of
errors. According to our experiment experiences, at least 20
samples are required for detecting the event of passing through
a door. Besides, in most cases, we observe that a person
passes through a door in two seconds. To avoid unnecessary
complexity, the sampling rate is configured as 50 Hz in our
study.
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Fig. 7. Changes of magnetic intensities when the holder closes to metals.

A prototype of LMDD is developed as an Android applica-
tion. Sensing data are temporarily stored in smartphones and
uploaded to a cloud (e.g., Amazon EC2) server. For real-time
applications, the cloud server executes the LMDD algorithm
and sends the result back to smartphones. On the other side,
for delay-tolerant applications, the results are returned after
collecting sufficient data, so as to guarantee a certain level of
accuracy.

B. Environments

We select four typical environments to examine the real-
world performance of LMDD, including offices, classrooms,
residential houses and a hospital:

• The hospital environment is the most complex one. Most
of doors in the hospital are made by metallic material,
and the equipments inside each room are different. The
metallic doors in the hospital are demonstrated in Fig. 9.
In general cases, those doors are always open. Therefore,
the “open-close” action is not a necessary activity. When
people enter those doors, the magnetic strength will still
have a severe change. The complex electronic devices in
diagnostic chambers also interfere the magnetic strength.
According to the proposed algorithm, those changes can
give hints about crossing doors.

• In the classroom environment, the room arrangement is
not regular. Therefore, directions of doors are diverse.
The furniture (mainly wooden desks and chairs) in each
classroom contains little metallic material. We test LMD-
D in classrooms of two buildings in our university. The
Fig. 10 elucidates the environment of classrooms. Those
doors contain metallic frames and knobs, which can
interfere the magnetic signals.

• In the office environment, doors are symmetrically dis-
tributed along a corridor. All the walls in the office
building (including reinforced concrete walls and hollow
walls) contain metallic material. The distributions of
magnetic density in this environment are regular. Showed
in Fig. 11, wooden doors contain metallic doorknobs and
other metalliferous accessories.

• The area of a typical residential house is much smaller,

925924924924924924



(a) The floor plan of offices (b) The floor plan of classrooms (c) The floor plan of the house

Fig. 8. Floor plans of the experimental environments (excluding the hospital).

Fig. 9. The environment of the hospital. Fig. 10. Doors of classrooms. Fig. 11. Doors of offices.

but the ambient magnetic fields are more complex due
to the multifarious furniture. The distribution of magnet-
ic signals inside the residential house is unpredictable.
Therefore, the precision of the denoising procedure is
lower than previous environments. The detection of doors
is more difficult.

The floor plans of the office, classroom and residential house
environments are illustrated in Fig. 8. Although the floor plan
of the hospital is complicated and not demonstrated here,
our LMDD works in hospital environment, since fundamental
elements are similar with other environments, such as pas-
sageways, stairs and rooms. The precision of identifications is
even higher than other environments due to metallic doors.

C. Results

More than 1800 traces (corresponding to over 1800 exper-
iments) have been collected. Most of them include more than
100 door events. In order to comprehensively evaluate the
performance of LMDD, in this part we first define the de-
tection accuracy, and then discuss how the detection accuracy
is affected by various impact factors.

1) Detection accuracy: We utilize three types of prediction
rates: true positive (TP), false positive (FP) and false negative
(FN). A TP event is a correct rate to detect door events. An

TABLE I
ACCURACY OF LMDD IN FOUR ENVIRONMENTS

Environment TP FP FN Accuracy
Office 59% 10% 31% 66%

Classroom 61% 19% 20% 75%
Residential house 59% 18% 23% 71%

Hospital 70% 19% 11% 85%

FP is a wrongly reported door event by LMDD. An FN rate
is a missed door case by LMDD.

TP =

n∑
j=1

Ndj

Na

FP =

n∑
j=1

Npj

Na

FN =

n∑
j=1

Nfj

Na
(12)

where j is the environment number. Ndj represents the number
of detected doors in jth environment. Npj is the number of
false positive events. Nfj denotes the number of missing doors
in jth environment. Na is the total number of events.
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Fig. 12. Performance comparison between LMDD and UnLoc.

Finally, the true positive accuracy is defined as follows:

Accuracytyr = NTP /(NTP +NFN ) =

n∑
j=1

Ndj

n∑
j=1

(Ndj +Nfj)

(13)
The accuracy for all cases can also be obtained.

Accuracyac = (NTP +NTN)/(NP +NN ) (14)

where TN is the true negative events. NN is the total rates
of negatives. NP is the total rates of positives. The TN is
unpredictable parameter, since most of raw data are negatives
for a door. Therefore, the Accuracyac is difficult to calculate
correctly. We use the Accuracytpr as the accuracy of our
algorithm.

The detailed accuracy results are listed in Table I. Each
item is the average value aggregated from all experiments.
LMDD achieves the highest accuracy (85%) in the hospital
and the lowest accuracy (66%) in offices. The overall average
detection accuracy is 74%, which is basically a sound accuracy
to effectively detect doors. Besides, we compare the detection
accuracy of LMDD with that of UnLoc, a representative
unsupervised indoor localization algorithm that is most similar
to LMDD among related works. The comparison results are
shown in Fig. 12. Obviously, LMDD outperforms UnLoc.

2) Impact factors: Below we investigate four kinds of
impact factors that may affect the performance of LMDD.

Human behavior: The user’s habits and carrying motions
of a smartphone are also important influential factors. In our
experiments, most participators hold smartphones horizontally,
and thus the data collected from these participators generate
higher detection accuracy. Otherwise, the detection accuracy
is generally decreased by 6% – 14%. Another situation is
that a crowd of people cross a door simultaneously. Since
the human body can influence the local magnetic strength,
the precision of LMDD will decrease within a certain scope.
If two or more persons simultaneously pass through a door,
the magnetic signals may interfere with each other. To solve
this problem, more sensing data are required by LMDD for
eliminating unwanted signals.
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Fig. 13. The different performances for the opened door and the closed door.

TABLE II
THE POWER CONSUMPTION (MW) OF SENSORS

Parts Average Maximum Minimum
Android system 151.9 215.6 88.2
Megnetometer 49 112.7 24.5

WiFi 147 245 122.5
Gyro., Acc. and Light 58.8 49 73.5

Status of doors: Doors normally have two statuses: opened or
closed (for some cases, the door is semi-opened. We consider
that the semi-opened state is similar with the opened state,
which means people can go through doors without any stop.)
On the contrary, when a person passed a closed door, he
must stop and open the door. During this process, the built-
in sensors, such as gyroscope, accelerometer and compass,
will have a combination readings. For example, an obvious
stop following a speedup process can be defined as a “closed
door event”. Fig. 13 shows the difference between a “closed
door event” and a “opened door event”. For the “closed door
event”, the speed of magnetic intensity changes is slower than
the “opened door event”. Meanwhile, the trend of magnetic
strengths for the “closed door event” case is more complicated
than the trend for the “opened door event” case.

Door type: The material of a door has critical influence on the
decision of a door event. In our experiments, different types of
doors appear in four environments. The corresponding values
of TP, FP and FN of different door types are shown in Fig. 14.
From this figure, we can find that it is easiest to detect metallic
doors, followed by wooden doors. Glass doors are the most
difficult to detect. The reason is intuitive: a glass door contains
little metal material except in its frames.

Power consumption: Built-in sensors consume the energy of
smartphones. To estimate the energy consumption, we evaluate
the usage of sensors when they are switch off separately. Table
II reveals the power consumptions of different parts. The
average consumption is derived from 100 power measurements
during 10 minutes. In this interval, the energy costs are
various. The maximum and minimum power consumptions
are considered. It is obvious that the megnetometer only
use a small number of energies. Meanwhile the gyroscope,
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Fig. 14. Impact of door types.

accelerometer and light sensor also spend little power. As
a basic component, the Android system consumes a high
amount of energy (about 30%). WiFi is another main consumer
especially in the working mode. LMDD only utilizes one
sensor, therefore the energy usage is limited even in the case
of a high sampling rate.

V. CONCLUSION

Doors are important landmarks for indoor positioning sys-
tems. An accurate and light-weight door detection approach
is therefore highly desired. In this paper, we observe special
change patterns of magnetic signals when carrying a smart-
phone to pass through a door. Based on this observation,
we design a light-weight, infrastructure-free door detection
approach (named LMDD) running on a single smartphone.
A signal analysis algorithm combined with a feature corre-
lation function is designed to capture door events. Prototype
experiments in various typical environments show that LMDD
achieves sound door detection accuracy. We believe that our
proposed door detection method would significantly benefit
indoor positioning systems.
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